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Abstract 
This paper examines the volatility clustering behaviour between the changes in 

the iTraxx 5-year Europe Credit Default Swap (CDS) index and its theoretical 
determinants using the AR-GARCH model with the skewed student’s t distribution. 
Financial time series are known to be conditionally heteroskedastic, fat-tailed, and 
often skewed. It is demonstrated that the AR-GARCH model with the skewed 
student’s t marginal density function provides both better in-sample fit and more 
accurate out-of-sample forecasts than those based on the symmetric distributed 
assumptions. Moreover, to test the explanatory power of the theoretical determinants 
we perform regression analysis on data from the pre-crisis (2004-2007) and crisis 
periods (2007-2010). We show that stock returns and equity volatility have 
statistically significant explanatory power on the iTraxx CDS index during each 
period, while the risk-free interest rate has no statistically significant effect on the 
iTraxx CDS index during the crisis period.  
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1. Introduction 

The credit derivatives market has grown rapidly over the last five years. A credit 
default swap (CDS), one of the most important credit derivatives, is created to help 
banking and non-banking institutions efficiently diversify credit exposure. Principally, 
CDSs can be classified into two types: single-name and multi-name contracts. 
Single-name CDSs involve only one underlying entity whereas multi-name CDSs (e.g. 
CDS indices) comprise of a set of underlying entities in a portfolio pool. Our work 
focuses on CDS indices that are more efficient and liquid than holding a group of
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single-name CDS contracts as they allow investors to short or long the indices in 
order to adjust their credit risk exposure. The Dow Jones iTraxx family, one of the 
most liquid families of CDS indices, includes global companies with the exception of 
those based in North America. The most widely traded CDS index of the Dow Jones 
iTraxx family is the Dow Jones iTraxx Europe index, a portfolio made up of the 125 
most liquid investment grade European companies in accordance with CDS volume 
traded. Each company has equally weighted credit exposure (notional principal). 

Understanding the relationship between CDS spreads and its theoretical 
determinants has become an important issue. There are two pricing models for CDSs, 
structural form and reduced form models, of which our work focuses on the former to 
investigate the determinants of the most liquid iTraxx Europe 5-year CDS index 
spreads. Structural form models (or firm’s value models) originated from the option 
pricing theory of Black and Scholes (1973), and were first formulated by Merton 
(1974), and subsequently extended by researchers such as Black and Cox (1976), 
Geske (1977), Leland and Toft (1996), Zhou (2001), Collin-Dufresne et al.(2001), and 
amongst others. The core concept of a structural form models is that an obligor 
defaults when the asset value of a company hits a specific threshold level. 

Based on the structural form models, several earlier empirical studies have been 
applied to default swap markets. Collin-Dufresne et al.(2001), Longstaff et al. (2005), 
and Zhang et al. (2006) use linear regression to investigate the link between the key 
economic variables and bond yields. Recently, work has focused on extending earlier 
empirical studies on the iTraxx CDS market since iTraxx Europe CDS indices are 
more liquid than other relevant credit default instruments. Byström (2005), the first 
study extended to multi-name CDS spreads, tests the link between iTraxx spread 
changes and stock market using linear regression. This analysis shows that the iTraxx 
CDS market tends to be led by the stock market. Furthermore, he also demonstrates a 
significantly positive autocorrelation in the iTraxx market. Alexander and Kaeck 
(2008) and Ericsson et al. (2009) find that the changes in the CDS spreads are not 
only significantly affected by the firm’s equity value, but also influenced by the equity 
volatility and risk-free interest rates. They observe that the higher the equity volatility, 
the higher the firm’s value volatility, resulting in an upward trend in the CDS spread. 
Moreover, a low risk-free rate increases the default probability in the iTraxx CDS 
market. However, all these earlier empirical studies assume the error term of the linear 
regression model is normally distributed. 

 Financial time series are typified by volatility clustering behaviour; hence the 
autoregressive conditional heteroskedasticity (ARCH) model proposed by Engle 
(1982) and the generalized autoregressive conditional heteroskedasticity (GARCH) 
introduced by Bollerslev (1986) are very popular for modelling financial volatility. 
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These models are also being used to develop a more flexible and robust model to 
forecast financial time series in order to provide an explanation for volatility 
clustering and, implicitly, heavy-tailedness. However, numerous empirical studies 
show that financial time series often show skewed distribution conditionally as well as 
unconditionally, which implies that very large changes in returns occur with a higher 
frequency than under the symmetrically distributed assumption. A common 
assumption in applying standard GARCH models to financial time series is that the 
return series is conditionally symmetrically distributed (i.e. normally or student’s t 
distributed), which are rarely able to accommodate the excess of skewness.   

In this study the AR-GARCH model with the skewed student’s t distribution 
proposed by Hansen (1994) is implemented to investigate the volatility clustering 
feature of the iTraxx Europe CDS index variation against its determinants. The 
skewed student’s t distribution involves higher-order features of the conditional 
distribution, allowing the asymmetric behaviours of the error term to be captured. The 
symmetric student’s t distribution can be seen as a special case in which the skewness 
parameter is set to zero. As more skewness is imposed, the skewed student’s t 
distribution can be used to describe various combinations of asymmetric tail 
behaviours. 

The rest of the paper is organized as follows. In Section 2, the theoretical 
determinants of CDS spreads are discussed. In Section 3, the AR-GARCH model with 
different distributed assumptions and economic methodology of volatility forecasting 
performance will be introduced. In Section 4, we summarize the empirical analyses 
and results using the AR-GARCH with different marginal density functions. 
Conclusions are presented in Section 5. 

 

2. The Theoretical Determinants of CDS Spreads  
Theoretically, the main economic determinants of structural form pricing 

models are firm value, equity volatility, and the risk-free interest rate. Numerous 
structural form models have been extended from the basic structural form model 
suggested by Merton (1974), and all the extended studies are central to these three key 
determinants. Hence, in this study, we use linear regression analysis to investigate the 
relationship between the iTraxx spread changes with these three key variables, rather 
than including all systematic factors suggested by other extensive studies.  

A decrease in the market value of underlying entity results in an increase in the 
default probability, since the underlying entity is approaching the default barrier. 
However, estimating the value of firm assets and liabilities is not easy because 
investors can not get all the information analogous to that of the company’s managers. 
Since the changes in the firm’s stock price can reflect on the condition of the firm’s 
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operation, we use the Dow Jones Euro STOXX 600 index to represent the 
performance of the Euro zone equity market. The Dow Jones Euro STOXX 600 
reflects the performance of the 600 largest market capitalized companies in the 
European economic region.  

The variation of credit risk premia is an increasing function of equity volatility, 
since the likelihood of hitting the default barrier will increase while the fluctuation of 
firm value widens. The equity volatility can be estimated using either historical data 
or implied volatility based on stock options. Benkert (2004) demonstrates that 
explaining the variation in CDS spreads using implied volatility has a stronger impact 
than using historical volatility. However, considering the lack of traded options on 
some reference entities of the iTraxx Europe CDS index and illiquidity on some 
traded options, the implied volatility constructed by all available single-name 
underlying entities may not reflect all the current business risk in the European market. 
In this study, we choose the option-implied volatility index, the Dow Jones Euro 
VSTOXX 50 index, as a proxy of equity volatility instead. The Dow Jones Euro 
VSTOXX 50 index is based on Dow Jones Euro STOXX 50 options prices, which is 
designed to reflect near-term volatility market expectations by determining the 
implied volatility across all underlying equity options with a given time to maturity. 

The theoretical arguments support that the credit default spread is inversely 
related to the risk-free interest rate (see Duffie, 1999). The risk-free rate determines 
the risk neutral drift in firm value, that is, an increase in the risk-free interest rate 
tends to lower the risk-neutral default probability. Houweling and Vorst (2005) use 
the swap rate as a proxy of the risk-free interest rate and find a stronger impact of the 
swap rate on the CDS market than that of the Treasury rate. Thus, in our approach we 
use the 1-year Euro Swap middle rates as a proxy for risk-free rates, which may 
provide near-term expectations on the European economic and credit environment. 

   

3. Volatility Modelling and Evolution of Volatility Forecasts 

3.1 The AR-GARCH Model with Different Distributed Assumptions 

An autoregressive (AR) model is chosen for the conditional mean to allow for 
possible autocorrelation in the lagged iTraxx index spreads. The conditional mean 
equation of a univariate time series ty  can be expressed as: 
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where tz  is a sequence of independently identically distributed random variables, 
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tσ  is conditional variance, and tε  denotes the error term of the time series. 
Therefore, the conditional variance equation of Bollerslev (1986) can be expressed as: 
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satisfaction with the sufficient stable condition of strictly stationary in the GARCH 
process. Moreover, p and q are also restricted to be non-negative integers.  

The inability of the symmetric GARCH model to accommodate the excess of 
skewness in financial series is well-known. The skewed student’s t density function 
proposed by Hansen (1994) has the additional benefit of including igher-order 
features of the conditional distribution. Therefore, the skewed student’s t density 
function, present in Equation (4), will be used to account for the excess of skewness 
in this study:  
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where ν  is the tail index andλ  is the skewness parameter, which are used to control 
the different shape of the density function and ( )⋅Γ  is the gamma function. The two 
shape parameters need to be restricted with 2>ν  and 11 <<− λ respectively. If 

01 << λ  the density function skews toward to the right, conversely if 10 −>> λ  
the density function skews toward to the left. Furthermore, the skewed student’s t 
distribution transforms to the normal distribution by setting ∞=ν and 0=λ and to 
symmetric student’s t distributions by setting 0=λ . 
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3.2 Evaluation of Volatility Forecasting Performance 
3.2.1 Loss Functions 

A common way to compare different forecast models is given by the 
minimization of a statistic loss function. AR-GARCH models describe the evolution 
of the conditional mean and conditional variance. Once the parameters of the 
AR-GARCH models have been estimated using in-sample period data, and 
conditional variance forecasts based on these estimates can be generated over the 
out-of-sample period. In order to evaluate the forecast accuracy of various competing 
models, statistical loss functions have to be used to measure forecast errors. Mean 
squared error (MSE) is the most commonly used loss function, however, the MSE 
criterion is very sensitive to outliers. Hence, a more robust loss function to possible 
presence of outliers, mean absolute error (MAE) is taken into account in this study. 
Moreover, the logarithmic loss (LL) function, proposed by Pagan and Schwert(1990), 
penalizes volatility forecasts asymmetrically in low volatility and high volatility 
periods, which can be used to deal with the second shortcoming of the MSE criterion. 
These three loss functions are defined as follows: 
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where n is the number of forecast data points, T is the entire in-sample period, 2
th  is 

forecast conditional variance at time t, and 2
tσ  is realized conditional variance at 

time t. 
  
3.2.2 Diebold-Mariano Test (DM Test) 

Diebold and Mariano (1995) propose a test to evaluate the accuracy of L-steps 
ahead forecasts of one model in comparison to another. The null hypothesis of the test 
is that two competing models have equal forecast accuracy against the alternative 
hypothesis of significant difference in the accuracy of the two competing forecasts. 
The DM test is based on a t-test that ( ) 0=tE δ  where ( )⋅E  is the expectation 
operator, .B

t
A

tt ll −=δ  A
tl , and B

tl  are forecast errors of two competing models A and 
B respectively. The DM test t statistic can be expressed as: 
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where δ  and )(δV  is mean and variance of forecast errors over the forecasting 
period respectively. However, tδ  can not be assumed to be uncorrelated. The DM 
test assumes that the autocorrelations of order L or higher are zero of tδ , so )(δV  
can be estimated asymptotically as: 
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where tδ  is serially correlated for n > 1 and jγ  denotes the j-th autocovariance of 

tδ .  
 

4. Empirical Analysis  
4.1 Data Description 

Our data set on the most liquid iTraxx 5-year Europe CDS index, the STOXX 
600 index, the VSTOXX 50 index, and the 1-year Euro swap rate consists of 1375 
daily observations; it covers the period from August 16, 2004 to January 28, 2010. 
Although the iTraxx 5-year Europe CDS index was launched in June 2004, our data 
set lacks some trading day observations on the iTraxx CDS index before mid-August 
2004. As a result, we use data from August 16, 2004 onward in this study. Since the 
new series of the iTraxx Europe CDS index is launched every six months in order to 
adjust the underlying companies, we use the most current series data of the iTraxx 
index at any point in time to ensure our analysis is always based on the most liquid 
underlying entities. The data set on 1-year Euro Swap rate is obtained from 
Datastream, the data for the STOXX 600 and the VSTOXX 50 indices are obtained 
from Stoxx Ltd1, and the iTraxx CDS index data is available from Markit Group2.  

 
4.2 Descriptive Statistics 

Before investigating the relationship between the iTraxx CDS index and the 
explanatory variables, we provide summary statistics for the iTraxx CDS index and 
the key variables. We consider the natural logarithmic returns of all the time series. In 
order to determine the presence of mean reversion in the logarithm of returns, the unit 
root tests (Augmented Dickey-Fuller test (ADF test)) can be used to verify the 
behaviour of the time series. The summary statistics and the unit test results are 

                                                 
1 www.stoxx.com 
2 www.markit.com 
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presented in Table 1. 
The results in Table 1 show that the distributions of log returns of the iTraxx 

index and its theoretical determinants are skewed. Moreover, the iTraxx CDS and the 
VSTOXX 50 indices are more volatile than the STOXX 600 index and the Euro swap 
rate. The ADF test is run on the level of the log returns of all indices. One can see 
from the results that all the null hypotheses under the ADF test can be rejected at the 
5% level. The mean-reverting coefficients in the ADF test is statistically significantly 
negative, confirming the stationarity of periodically mean-reverting cycles. 

 
Table 1 Summary statistics of daily logarithmic returns  

  iTraxx  STOXX600 VSTOXX 50 Euro Swap 
 Mean (%) 0.0493  0.0025  0.0010  -0.0460  

 Median (%) -0.1243  0.0732  -0.5146  0.0255  
 Maximum (%) 25.5365 9.4100  32.7675  5.5169  
 Minimum (%) -26.9760 -7.9297  -19.8182  -5.0990  
 Std. Dev. (%) 3.76  1.35  5.60  1.05  

 Skewness 0.2985  -0.1358  0.9600  -0.1285  
 Kurtosis 10.5970 11.1317  6.5341  7.2760  

Jarque-Bera Test 3326.9970* 3792.5717* 926.7308*  1051.3420* 
ADF Test -31.7771* -38.6537*  -39.1200*  -32.7481*  

* denote significantly at 5% significance level. 
 

Figure 1. The iTraxx Europe 5-year index and its determinants, normalized to 
start at 1 
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Byström (2005, 2006), and Alexander and Kaeck (2008) point out that the 

iTraxx Europe CDS index exhibits significant autocorrelation in its previous day’s 
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changes, resulting in the inefficiency in the European 5-year CDS market. According 
to the results of the Ljung Box test, Q(20) and Q(30) are 61.8043 and 78.883 
respectively, supporting earlier empirical studies. In order to deal with the 
autocorrelation problem, the effect of the lagged returns on previous day’s iTraxx 
CDS spread will be included in the next section. 

As seen in Figure 1, before 26 July 2007 the iTraxx CDS index demonstrates 
stable downward trend, and displays positive correlation with the VSTOXX 50 index 
and negative correlation with the Euro swap rate and the STOXX 600 index. After 26 
July 2007, all key market variables and the iTraxx CDS index fluctuated dramatically. 
It's worth mentioning that the Euro swap rate seems not to be significantly negatively 
correlated to the iTraxx index after 26 July 2007. 
 
4.3 Linear Regression Analysis 

In this section, we use the following linear regression (Equation (13)) to 
analyze the dependence between the daily log returns of the iTraxx CDS spreads and 
daily log returns of the explanatory variables. 

,413210 tttttt rCDSVSCDS εθθθθθ +Δ+Δ+Δ+Δ+=Δ −       (13) 
 
 The regression will be tested in three stages: the whole period, the pre-crisis 

period from August 16 2004 to July 25 2007, and the crisis period between July 26 
2007 and January 28, 2010. Let tCDSΔ  denote the logarithmic returns of the iTraxx 
CDS spreads,  tVΔ  denote logarithmic returns of the VSTOXX 50 index, trΔ  
denote the logarithmic returns of the 1-year Euro swap rate, and tSΔ  denote the 
logarithmic returns of the STOXX 600 index. The error term, tε , are i.i.d. random 
errors with zero mean and unit variance, and will be assumed to be normally, 
symmetric student’s t and skewed student’s t distributed respectively. The regression 
results are given in Table 2. 

All the explanatory variables are statistically significant at the 5% level in the 
main and two sub-period regressions except for the Euro swap rate during the crisis 
period. Byström (2005, 2006) and Alexander and Kaeck (2008) discover significant 
predictive ability for lagged daily iTraxx spread changes by using previous day’s 
iTraxx spreads, the results in Table 2 support this in that the European CDS market 
exhibits significant positive first-order autocorrelation. However, the impact of the 
positive first-order autocorrelation in the crisis period is not as sensitive as in the 
pre-crisis period. 

The fluctuation of the iTraxx CDS index has the negative correlation with the 
lagged returns in the STOXX 600 index and the positive correlation with the lagged 
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returns in VSTOXX 50 index, which is consistent with previous investigations. The 
fluctuation of the iTraxx CDS index is more sensitive to lagged returns in the STOXX 
600 and the VSTOXX 50 indices during the crisis period. The Euro swap rate has a 
significant effect on the iTraxx CDS spreads during the pre-crisis period only. 
Alexander and Kaeck (2008) indicate that the risk-free rate has no statistically 
significant impact on the iTraxx CDS spreads during the turbulent period, consistent 
with our finding in the crisis period. We also use the 1-year Euribor rate as the proxy 
of the risk-free interest rate and the results appear similar to those displayed in Table 2. 
However, the values of 2R  for three testing periods are not as good as using the Euro 
swap rate. For this reason, we do not provide the results of using the 1-year Euribor 
rate in the study. 

 
Table 2 Regressions with all explanatory variables 
 Whole Period Pre-crisis Period Crisis Period 

0θ  0.0003 0.0008 -0.0001 

 (0.3834) (1.0945) (-0.0904) 

1θ  -1.2179 -0.6893 -1.1443 

 (-13.1930) (-4.2615) (-8.3488) 

2θ  0.0891 0.0739 0.1615 

 (4.0382) (3.1437) (4.0849) 
3θ  0.1579 0.2972 0.1239 

 (7.2260) (9.3642) (3.9387) 

4θ  -0.2816 -0.4975 -0.1967 

 (-3.4609) (-4.2336) (-1.6513) 
2R  0.3470 0.2526 0.3886 

Adjusted 2R  0.3451 0.2486 0.3846 

Each column reports the estimates of the regression by Eq. (13), with t-statistics below in brackets. 

 
Comparing the two sub-periods, the market factors have a stronger effect during 

the crisis period than in the pre-crisis period. The degree of explanation, 2R , can be 
used to measure how well the regression estimates the time series. In the crisis period, 
the iTraxx CDS spreads were more volatile and 2R  is much higher than that in the 
pre-crisis period, which may indicate that these theoretical determinants have stronger 
explanatory power in the period of high volatility. Using the proxy of firm value 
suggested by Alexander and Kaeck (2008) in Equation (13), the values of 2R  are 
around 31% for the whole period and 36% for the crisis period. The main difference is 
that Alexander and Kaeck (2008) generate an equally weighted stock portfolio 
comprised of most of the underlying entities from the iTraxx 5-year CDS Europe 
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index as the proxy firm value.  However, the iTraxx CDS index only covers 125 
investment grade European companies, which may not reflect in entirety the European 
economic situation. On the contrary, the STOXX 600 index can represent the 
performance of the Euro zone equity market, which may explain the daily fluctuation 
of the iTraxx CDS index better.  

 

4.4 Residual Analysis 

The AR(1)-GARCH(1,1) model with the skewed student’s t marginal 
distribution is used to estimate the behaviour of the regression residuals instead of the 
standard AR-GARCH models. In order to assess the practical relevance of this 
distribution, the comparison among the skewed student’s t distribution, the normal 
and the symmetry student’s t distributions are taken into account. In addition, the 
Ljung Box Q-Test, the ARCH-LM test, and the Pearson goodness-of-fit (GOF) test 
are used to address estimation risk. The Ljung Box Q-Test for squared standardized 
residuals detects any remaining serial correlation in the conditional variance equation. 
If the conditional variance equation is correctly specified, all Q-statistics of 
standardized residuals should be insignificant with no observable autocorrelation. The 
ARCH-LM tests the null hypothesis that there is no ARCH effect up to order q in the 
squared residuals. Moreover, we employ the Pearson goodness-of-fit test for 
standardized residuals as a statistical diagnostic in order to test the null hypothesis of 
the distribution of certain time series is consistent with a particular theoretical 
distribution. 

Table 3 shows the AR(1)-GARCH(1,1) estimations and the tests results for the 
whole period. The AR(1)-GARCH(1,1) model can be adequate to capture the 
dynamics of the residual series of Equation (13). All the ARCH-LM tests are highly 
statistically significant at the 5% level, meaning the heteroskedasticity is removed. 
The results of the Ljung Box Q-statistic with 30 lags test accept the null hypothesis of 
no autocorrelation, meaning the AR(1)-GARCH (1,1) model is adequate to capture 
the conditional mean and the conditional variance. The estimated numbers of degrees 
of freedom ν  are statistically significant lying on 5.92 and 5.68, which indicate 
residual series of the whole period to be fat-tailed. The skewness parameter λ  is 
positively significantly different from 0 at the 5% level, exhibiting the distributions of 
residual series seem to be skewed.  

According to the Pearson goodness-of-fit statistics, the skewed student’s t 
distribution is more suitable to capture the volatility clustering due to the insignificant 
Pearson goodness-of-fit statistics of the normally and the symmetric student’s t 
distributed assumptions. Moreover, the Akaike information criteria (AIC) and the 
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log-likelihood values highlight the fact that AR(1)-GARCH(1,1) with skewed 
student’s t marginal density function better estimate the residual time series than 
symmetric AR(1)-GARCH(1,1) model. Table 4 presents the Jarque-Bera and the 
Kolmogorov-Smirnov (KS) tests of the residual series for the whole period. The 
results show that the residual is neither normally distributed nor symmetric student’s t 
distributed but skewed student’s t distributed, supporting the theory that the 
AR(1)-GARCH(1,1) with skewed student’s t marginal density function is more 
suitable to capture the volatility clustering feature of the regression residual. 

 
Table 3 Estimation results of AR(1)-GARCH(1,1) model for the whole period 
 Normal Student’s t Skewed Student’s t

Const. 0.0000 0.0007 0.0000 

 (164551.80) (5911.75) (646951.61) 
ARCH (1) 0.2121 0.1379 0.1474 

 (74.6730) (224.8342) (147.3609) 
GARCH (1) 0.7706 0.8619 0.8469 

 (412.9802) (802.2792) (998.6663) 
ν  ∞  5.9230 5.6794 

  (6.9997) (9.6586) 
λ  0 0 0.0732 

   (51.5312) 
AIC -6345.78 -6526.96 -6531.65 

Log-Lik 3179.89 3271.48 3274.82 

GOF(10) 26.0342 47.8487 4.2391 

 [0.0000] [0.0000] [0.1201] 
ARCH-LM Test 0.0500 0.3033 0.0008 

 [0.8231] [0.5818] [0.9769] 
Ljung Box Q-Test 17.0379 14.8608 15.0906 

 [0.9721] [0.9905] [0.9892] 
Each column reports the estimates of the model defined in section 2.1, with t-statistics underneath in 

parentheses. The statistics of all tests are reported with p-value underneath in brackets. AIC and 

Log-Lik are the Akaike Information criterion and Log-Likelihood value 

 
Table 4 Distribution test of the residual series in the whole period 

  Jarque-Bera Test KS (Symmetric t) KS(Skewed t) 
Statistic 8015.6756 0.0536 0.0193 

p-Value 0.0010 0.0007 0.6799 
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As is typical of AR-GARCH model estimates, the sum of the coefficients on the 
lagged squared error and lagged conditional variance for the whole period with the 
skewed student’s t marginal density function is very close to unity (approximate 
0.9943). This implies that shocks to the conditional variance will be highly persistent. 
This can be demonstrated by considering the equations for forecasting the 
standardized regression residuals of the conditional variance using the 
AR(1)-GARCH(1,1) model based on skewed student’s t distribution. A large sum of 
these coefficients implies that a large positive or a large negative change will lead to 
high future variance forecast for a protracted period. 

 

4.5 Out-of-Sample Forecast Evaluation 

An out-of-sample forecast evaluation provides a powerful framework to 
evaluate the performances of competing models. Many empirical studies (e.g. Pagan 
and Schwert(1990), Davis and Kutan(2003), Alberg, Shalit and Rosef(2008), and so 
on) demonstrate that the asymmetric assumption of conditional variance provides a 
better in-sample fit and better out-of-sample predictive power. In this section, the 
whole data set is divided into an in-sample period from August 16, 2004 to September 
12 2008 and an out-of-sample period from September 15 2008 to January 28 2010 for 
the forecasting evaluation.  

Table 5 reports the out-of-sample forecast evaluation results using the statistical 
loss function from section 3.2.1 of this study together with various distributions. All 
of the loss functions clearly indicate that the AR(1)-GARCH(1,1) model with skewed 
student’s t marginal density function performs best for all of the four forecast horizons, 
and the second best is based on the student’s t distribution. In order to examine if the 
forecast accuracy among the three assumptions on distribution are significantly 
different, the DM test is adopted to check the statistical significance when all models 
are compared in pairwise. 

Table 6 presents the DM test results using the skewed student’s t distribution as 
the benchmark, and the comparison is carried out with regards to all the statistical loss 
functions discussed in section 3.2.1. As can be seen in Table 6, the skewed student’s t 
distribution significantly outperforms the symmetric models at the 5% level. The 
signs of the DM statistics of the comparison between the skewed student’s t 
distribution and the symmetric distributions are always significantly positive; 
indicating the loss of the skewed student’s t is significantly lower than that of 
symmetric distributions. In other words, the AR(1)-GARCH(1,1) with skewed 
student’s t marginal density function provides a more accurate volatility forecast, 
demonstrating the skewed student’s t distributed assumption of regression residual 
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outperforms the symmetric distributed assumption for the forecast evaluation.  
 
Table 5 Out-of-sample forecast evaluation results for statistical loss functions: 

1-,5-,10- and 20-day forecast horizions 

 
Table 6 Diebold-Mariano Test  

 MSE MAE LL 
 Statisitic p-Value Statisitic p-Value Statisitic p-Value

1 day 
Normal v.s. Skewed t 3.6167 0.0006 14.4720 0.0000 9.7414 0.0000
Student's t v.s. Skewed t 3.0810 0.0036 4.9934 0.0000 6.6068 0.0000
5 days 
Normal v.s. Skewed t 2.6666 0.0117 10.9426 0.0000 7.0684 0.0000
Student's t v.s. Skewed t 2.5321 0.0165 6.2849 0.0000 7.6274 0.0000
10 days 
Normal v.s. Skewed t 2.7083 0.0105 7.4710 0.0000 4.5816 0.0000
Student's t v.s. Skewed t 2.6424 0.0125 6.4235 0.0000 6.4022 0.0000
20 days 
Normal v.s. Skewed t 2.0971 0.0446 4.2894 0.0000 2.4304 0.0211
Student's t v.s. Skewed t 2.7718 0.0088 5.7786 0.0000 3.7596 0.0004

  Normal  Student's t Skewed t 
1 day    

MSE (%) 0.2912  0.2029  0.1901  
MAE (%) 0.00001  0.00001  0.00000  
LL (%) 6.1755  3.5690  3.2217  

5 days    
MSE (%) 0.4894  0.3671  0.3462  
MAE (%) 0.00003  0.00002  0.000018  
LL (%) 18.0083  12.1626  11.2584  

10 days    
MSE (%) 0.5956  0.4823  0.4583  
MAE (%) 0.00004  0.00003  0.00003  
LL (%) 25.5309  19.6858  18.5395  

20 days    
MSE (%) 0.7769  0.6723  0.6466  
MAE (%) 0.00007  0.00006  0.00005  
LL (%) 41.6212  35.5922  34.0249  
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5. Conclusion 
This study investigates the linear relationship between theoretical determinants 

and the iTraxx Europe CDS index. The theoretical determinants of the iTraxx CDS 
index have a significant impact on the iTraxx CDS market, except for 1-year Euro 
Swap rate, which has no statistically significant effect on the iTraxx CDS market in 
the crisis period. This finding indicates that the risk-free rate yield curve has no 
statistically significant effect on the iTraxx CDS market in the period of high volatility. 
Moreover, all the explanatory variables in this study have higher explanatory power 
than previous empirical studies due to a better proxy of firm’s value suggested in this 
study. 

Furthermore, financial time series are known to be conditionally 
heteroskedastic, fat-tailed, and often skewed. To accommodate for this we further 
relaxed the assumption of time series of regression residuals from symmetric 
distributions to an asymmetric distribution. Our results show that volatility clustering 
features in the iTraxx CDS market can not be fully captured by using the standard 
AR(1)-GARCH(1,1) model. The AR(1)-GARCH(1,1) model with the skewed 
student’s t marginal density function is much more suitable to capture mean-reverting 
conditionally heteroscedastic process for innovations. In addition, the sums of the 
coefficients on the lagged squared error and lagged conditional variance are very 
close to unity, indicating a large positive or a large negative change will lead to high 
future variance forecast for a protracted period.  

Out-of-sample forecasting comparison is carried out by comprising 1-day, 5-day, 
10-day and 20-day ahead volatility forecasts. The statistical loss functions 
demonstrate that AR(1)-GARCH(1,1) model with skewed student’s t marginal density 
function outperforms the standard AR(1)-GARCH(1,1) models in forecasting 
volatility for all four forecast horizons. The Diebold-Mariano is applied to further 
examine whether the differences in the performances among three distributed 
assumptions are significant, and the results show that the AR(1)-GARCH (1,1) model 
based on the skewed student’s t distributed assumption significantly outperforms other 
two competing models. Overall, the inclusion of AR(1)-GARCH(1,1) effects with 
fat-tailedness and skewness provides not only a better in-sample fit but also more 
accurate out-of-sample forecasts.  
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